Cohomogeneity One Manifolds of Even Dimension with Strictly Positive Sectional Curvature
نویسندگان
چکیده
منابع مشابه
Strictly Kähler-Berwald manifolds with constant holomorphic sectional curvature
In this paper, the authors prove that a strictly Kähler-Berwald manifold with nonzero constant holomorphic sectional curvature must be a Kähler manifold.
متن کاملOn the Geometry of Cohomogeneity One Manifolds with Positive Curvature
There are very few known examples of manifolds with positive sectional curvature. Apart from the compact rank one symmetric spaces, they exist only in dimensions 24 and below and are all obtained as quotients of a compact Lie group equipped with a biinvariant metric under an isometric group action. They consist of certain homogeneous spaces in dimensions 6, 7, 12, 13 and 24 due to Berger [Be], ...
متن کاملOn cohomogeneity one nonsimply connected 7-manifolds of constant positive curvature
In this paper, we give a classification of non simply connected seven dimensional Reimannian manifolds of constant positive curvature which admit irreducible cohomogeneity-one actions. We characterize the acting groups and describe the orbits. The first and second homo-topy groups of the orbits have been presented as well.
متن کاملstrictly kähler-berwald manifolds with constant holomorphic sectional curvature
in this paper, the authors prove that a strictly kähler-berwald manifold with nonzero constant holomorphic sectional curvature must be a kähler manifold.
متن کاملon cohomogeneity one nonsimply connected 7-manifolds of constant positive curvature
in this paper, we give a classification of non simply connected seven dimensional reimannian manifolds of constant positive curvature which admit irreducible cohomogeneity-one actions. we characterize the acting groups and describe the orbits. the first and second homo-topy groups of the orbits have been presented as well.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Geometry
سال: 2004
ISSN: 0022-040X
DOI: 10.4310/jdg/1102536709